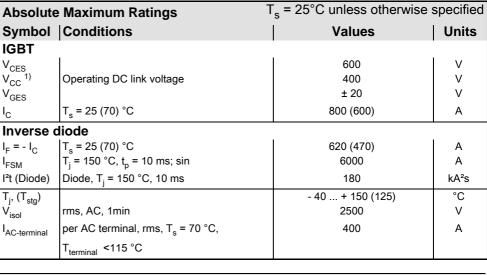
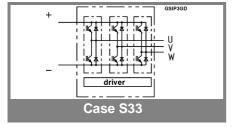

SKiiP 803GD061-3DUW ...

SKiiP[®] 3

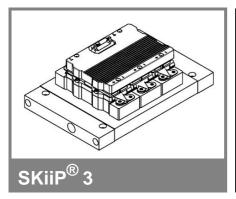

6-pack-integrated intelligent power system

Power section SKiiP 803GD061-3DUW


Preliminary Data

Features

- · SKiiP technology inside
- · Low loss IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 3 power section)
- UL recognized File no. E63532 (SKiiP[®] 3 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)



Characte	Characteristics					T _s = 25°C unless otherwise specified			
	Conditions				min.	typ.	max.	Units	
IGBT						-7			
V _{CEsat}	I _C = 300 A measured at	A, T _j = 25 (1 terminal	125) °C;			1,5 (1,6)	1,8	V	
V_{CEO}	T _i = 25 (125) °C; at terminal					0,8 (0,7)	1 (0,9)	V	
r_{CE}	T _j = 25 (125) °C; at terminal					2,4 (3,1) 1,2 (36)	2,7 (3,4)	mΩ	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}\text{C}$					mA			
$E_{on} + E_{off}$	$I_{\rm C}^{\rm I}$ = 300 A, $V_{\rm CC}$ = 300 V					mJ			
	$T_{j} = 125^{\circ}$	T _i = 125 °C, V _{CC} = 400 V				39			
R _{CC+EE}	terminal o	hip, T _i = 25	5 °C			mΩ			
L _{CE}	top, botto	m ´				12		nΗ	
C _{CHC}	per phase, AC-side				1			nF	
Inverse o	Inverse diode								
$V_F = V_{EC}$	I _F = 300 A measured at	A, T _j = 25 (1 terminal	25) °C			1,3 (1,2)	1,5	V	
V_{TO}	T _i = 25 (1	25) °C				0,8 (0,6)	1 (0,8)	V	
r _T	$T_i = 25 (1)$	25) °C				1,5 (1,9)	1,7 (2)	mΩ	
Ė _{rr}		A, V _{CC} = 30	0 V			5		mJ	
	T _j = 125 °	C, V _{CC} = 4	00 V			6		mJ	
Mechani	cal data				•				
M _{dc}	DC termin	nals, SI Uni	ts		6		8	Nm	
M _{ac}		nals, SI Uni			13		15	Nm	
W	SKiiP® 3 System w/o heat sink				2,4			kg	
W	heat sink					5,2		kg	
Thermal characteristics (NWK 40; 8l/min; 50%glyc.); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)									
R _{th(j-s)I}	per IGBT			•		•	0,051	K/W	
R _{th(j-s)D}	per diode						0,1	K/W	
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)				
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	4,2	20,4	23,4	0	69	0,35	0,02	1	
$Z_{th(j-r)D}$	7,8	12	53,1	53,1	50	5	0,25	0,04	
$Z_{th(r-a)}$	4,6	4,7	1,1	0,6	48	15	2,8	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 803GD061-3DUW ...

Absolute Maximum Ratings						
Symbol	Conditions	Values	Units			
V_{S2}	unstabilized 24 V power supply	30	V			
V_{i}	input signal voltage (high)	15 + 0,3	V			
dv/dt	secondary to primary side	75	kV/μs			
V_{isollO}	input / output (AC, rms, 2s)	2500	V			
V _{isolPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	960	V			
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V			
f	switching frequency	20	kHz			
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C			

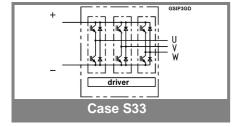
6-pack-integrated intelligent power system

6-pack integrated gate driver SKiiP 803GD061-3DUW

Preliminary Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and


DC-bus voltage (option)

- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 40/85/56 (SKiiP[®] 3 gate driver)

Characte	eristics	(T _a = 25°C)			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	27	V
I _{S2}	V _{S2} = 24 V	375+30*f/kHz+0,00111*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,1		μs
t _{d(off)IO}	input-output turn-off propagation time		1,1		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		600		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V) over temperature protection	110	750	120	A °C
T _{tp} U _{DCTRIP}	U _{DC} -protection (U _{analog OUT} = 9 V); (option for GB types)	110	400	120	V

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

